Large Methane Emissions from Palm Stems in Amazonian Peat and Flood Lands

Joost van Haren, University of Arizona, jvanhare@email.arizona.edu Hinsby Cadillo-Quiroz, Arizona State University; Licheng Liu and Qianlai Zhuang, Purdue University

Global atmospheric methane

Tropical wetlands have been implicated as the main source for this variability

Dlugokencky et al. 2016

Saunois et al. 2016

Seasonal inundation

Potential regional methane sources

Palm contributions to methane emissions from tropical peatlands.

- Do palm trees (*Mauritia flexuosa*) emit CH₄?
- What processes control the CH₄ plant flux?
 - Soil CH₄ production
 - Tree/palm speciesSpecies traits

- Please see my poster tonight
- Daily/annual variability
- How large is the plant contribution relative to the soil flux?
 - How can tree fluxes be scaled to the ecosystem level?
 - Tree flux complications?

Amazon basin peat/wetlands

Operation: Research plots

Two 0.5 ha carbon cycling plots installed based on <u>Rainfor</u> protocol

Undisturbed flux plots
Tree flux plots
Smaller symbols
denote tree species

Stem fluxes

CH₄ fluxes from *Mauritia flexuosa* stems at (<1.5m height) 6x greater than soil CH₄ fluxes

- Custom made flexible chambers
- Gasmet DX4015 FTIR gas analyzer
- Portable generator

van Haren et al., in review

Palm contributions to methane emissions from tropical peatlands.

- Do palm trees (Mauritia flexuosa) emit CH₄?
- What processes control the CH₄ plant flux?
 - Soil CH₄ production
 - Tree/palm species
 - Species traits
 - Daily/annual variability
- How large is the plant contribution relative to the soil flux?
 - How can tree fluxes be scaled to the ecosystem level?
 - Tree flux complications?

Palm CH₄ flux soil derived

van Haren et al., in prep

Plant contributions to methane emissions from tropical peatlands.

- Do palm trees (Mauritia flexuosa) emit CH₄?
- What processes control the CH₄ plant flux?
 - Soil CH₄ production
 - Tree/palm species
 - Species traits
 - Daily/annual variability
- How large is the plant contribution relative to the soil flux?
 - How can tree fluxes be scaled to the ecosystem level?
 - Tree flux complications?

Circadian rhythm flux?

Large variability between different years

Plant contributions to methane emissions from tropical peatlands.

- Do palm trees (Mauritia flexuosa) emit CH₄?
- What processes control the CH₄ plant flux?
 - Soil CH₄ production
 - Tree/palm species
 - Species traits
 - Daily/annual variability
- How large is the plant contribution relative to the soil flux?
 - How can tree fluxes be scaled to the ecosystem level?
 - Tree flux complications?

CH₄ diffusion out of Mauritia palm stems

Mauritia palms are cylindrical and do not taper with height, thus upscaling relatively easy

Whole tree flux

Average Mauritia flux based on diffusion modeling of stem profiles 1386₃₀₀³⁷⁰ mg-C d⁻¹

Does the palm flux matter?

Average Mauritia flux 1386₃₀₀³⁷⁰ mg-C d⁻¹

Number of palms in swamp: 130-250 ha⁻¹ (Kuhn 1999)

Stem CH₄	Total
kg-C ha ⁻¹ y ⁻¹	Tg-C y⁻¹
NA	NA
NA	0.1-0.7
51-160	0.4-1.1

Basin scale fluxes

- Mauritia is very common in water logged soils and can form monodominant stands:
 - Kahn (1991): Amazon basin 1.95 to 3.75 billion stems
 - 0.8 2.4 Tg-C y⁻¹
 - Ter Steege et al. (2013): Mauritia one of the hyperdominants ~1.5 billion stems
 - 0.76 Tg-C y⁻¹
 - Ter Steege et al. (2013): Palm (Mauritia, Mauritiella, and Astrocarium) hyperdominants ~11.9 billion stems
 - 5.75 Tg-C y⁻¹
 - Soil and Mauritia stem fluxes for the whole Amazon basin
 - 2.1-13.9 Tg-C y⁻¹

Fig. 47.6 Black water palm swamp dominated by *Mauritia flexuosa*. Tahuamanu River, Pando, Bolivia, 5-29-05

Plant contributions to methane emissions from tropical peatlands.

- Do palm trees (Mauritia flexuosa) emit CH₄?
- What processes control the CH₄ plant flux?
 - Soil CH₄ production
 - Tree/palm species
 - Species traits
 - Daily/annual variability
- How large is the plant contribution relative to the soil flux?
 - How can tree fluxes be scaled to the ecosystem level?
 - Tree flux complications?

Control of flooding on CH₄ flux

Conclusions

- Stem CH₄ fluxes are strongly correlated with soil CH₄ fluxes
- CH₄ emission potential appears to be conserved at the family level
- Palm fluxes are easy to scale up due to the cylindrical stem and lack of branching
- Stem CH₄ fluxes can be very significant for peatland ecosystem CH₄ fluxes

Co-Pls:

Hinsby Cadillo-Quiroz, ASU Qianlai Zhuang, Purdue

Postdoc:

Outi Lahtenoja

Graduate students: Steffen Busacker, ASU Licheng Liu, Purdue

Undergraduates

Peru Jimmy Cordova Max Jose Huaymacari David Reyna Susan Paredes USA Laura Kurtzberg Vanessa Springer Rachel Wehr Adam Welu Lilian Engel

Thanks to: